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A B S T R A C T

This paper analyses the environmental benefits of grassroots cooperation in agriculture. Specifically, it focuses on
the French context, which is characterised by a heavy reliance on pesticides and by strong inter-farmer in-
teractions structured within farm machinery sharing cooperatives (CUMAs). We theorise that these social in-
teractions are strategically complementary in the sense that the agroecological practices of farmers involved in
the CUMA network, in a given spatial unit, are influenced by the presence and actions of CUMA members in their
vicinity. At the extensive margin, increased peer-to-peer interactions, driven by a higher density of CUMA
members, foster sociotechnical exchanges conducive to reducing pesticide use. At the intensive margin, if
members individually make greater use of their CUMA, they collectively gain access to technologically advanced
machinery assets, which leads to a reduction in pesticide use through improvements in technical efficiency. Our
econometric analysis, based on a dataset provided by the National Federation of CUMAs covering 5793 indi-
vidual cooperatives, fully supports the extensive-margin mechanism. The intensive-margin mechanism, however,
is only observed for greater use of agroecological equipment by CUMA members, suggesting a rebound effect
when it comes to conventional equipment. Overall, these results point to the idea of a ‘hidden agroecological
transition.’

1. Introduction

The reduction of pesticide use is increasingly recognised as one of the
key challenges on the road to agroecology and sustainable farming
systems, given its considerable environmental implications in (i)
avoiding water contamination and the loss of soil biodiversity as well as
(ii) in preventing illness among farmers, local communities and con-
sumers (Wilson and Tisdell, 2001). The economics literature has so far
focused on a variety of economic instruments, such as taxes, subsidies
and legal regulations, to create incentives at the individual farm level
and to steer farming practices towards sustainability (e.g., Finger et al.,
2017; Chèze et al., 2020). However, it has largely overlooked the
potentially important role of self-organised inter-farmer cooperative
arrangements. Our study aims to fill this gap by examining how col-
lective action conducted by members within grassroots cooperatives
leads farmers to reduce their use of pesticides in agricultural activities.

Our study examines how institutional arrangements, neither market-
nor state-mediated, but governed by peer-to-peer interactions and col-
lective action, positively impact the environment. While a substantial

body of work has demonstrated that such institutional arrangements can
lead to sustainable management of natural resources (e.g., water,
grassland, forestry or fishing resources) (Ostrom, 1990; Baland and
Platteau, 1996; Agrawal, 2001; Persha et al., 2011), little is known on
the environmental effects generated by human-made common-pool re-
sources (Hess, 2008), chiefly cooperatives (Bauwens and Eyre, 2017;
Plateau et al., 2021). Our study contributes to the academic debate by
shedding light on how grassroots inter-farmer social interactions struc-
tured within grassroots cooperatives can be a catalyst for the adoption of
agroecological practices.

The French context provides fertile ground for investigation. Like
other Western countries, France is known to be heavily reliant on pes-
ticides, being the world’s third largest user (Jacquet et al., 2011). In fact,
pesticide consumption increased by 6 % between 2011 and 2020
(Eurostat, 2022). In parallel, France provides a prime example of the
vitality of self-organised, inter-farmer cooperative arrangements and
innovation practices, which are adopted in the agricultural sector across
both developing and developed countries. The most prevalent form of
such arrangements throughout French agriculture is by far the CUMA
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(Coopérative d’Utilisation de Matériel Agricole) (Cornée et al., 2020).
CUMAs provide a formal, legal framework enabling small groups of
farmers to organise themselves into cooperatives in order to share the
means of production by collectively investing in and managing ma-
chinery and other equipment assets, as well as, occasionally, labour.
Currently there are more than 12,000 CUMAs involving about half of all
French farmers.1

To establish the link between CUMA members’ presence and actions
in a given spatial unit and pesticide use, we draw on the literature on
social networks and the key concept of strategic complementarity. As
highlighted by social scientists, social interactions are ubiquitous in our
lives. Most social and occupational decisions we make (e.g., buying a
new product, adopting a new technology, attending a meeting,
committing a crime, etc.) are influenced by others (i.e., friends, ac-
quaintances, peers, etc.) (Granovetter, 2005; Tasselli et al., 2015;
Jackson et al., 2017). In the case of agriculture, social networks have
been used to understand the phenomena of peer-to-peer effects in col-
lective action, social learning and technology adoption (Bandiera and
Rasul, 2006; Conley and Udry, 2010; Baldassarri, 2015). Applied to the
context of this research, the concept of strategic complementarity sug-
gests that the actions towards agroecological practices of farmers
involved in the CUMA network in a given spatial unit are influenced by
the presence and actions of CUMA members in their vicinity.

Building on the research on cooperatives and, more generally,
common-pool resources (e.g., Felthoven et al., 2014; Suter et al., 2019),
we have derived an extensive-margin mechanism and an intensive-
margin mechanism from the concept of strategic complementarity. At
the extensive margin, we theorise that increased peer-to-peer in-
teractions within the CUMA network foster the exchange of socio-
technical knowledge and transfer of experience among CUMA members
(and potentially other farmers in the area), promoting the adoption of
environmentally friendly practices and eco-innovations by individual
farmers in the CUMA’s area or in neighbouring areas (i.e., spill-over
effect) through the establishment of norms. At the intensive margin,
we theorise that, when members individually invest more in and make
greater use of their CUMA, they collectively gain access to technologi-
cally advanced machinery assets. This will, in turn, enable farmers to
achieve technical efficiency gains and—provided there is no rebound
effect—reduce the use of the most expensive inputs, particularly pesti-
cides. We expect this effect to be especially strong for agroecological
equipment, as it more significantly alters farmers’ production function
and is less susceptible to a potential rebound effect.

We test these two mechanisms using a unique, proprietary database
of 5793 CUMAs obtained from the National Federation of CUMAs—this
dataset represents 64 % of the 9138 CUMAs registered with the National
Federation—in combination with additional data sources (notably
AGRESTE 2010, Agroclim and INSEE CLAP databases). To assess the
potential benefit on the environment, we draw on statistics from the
French National Pesticide Sales Database (BNV–d), which compiles data
from distributors of plant protection products. Our models explain the
average quantity of active substances contained in plant protection
products per hectare of utilised agricultural area (UAA) at the postcode
level for the years 2015 and 2016—smoothing out the storage effects
observed at the farm level. To isolate the effect of CUMA dynamics, we
control for an array of confounding factors related to community char-
acteristics, agricultural practices, crop types and weather conditions in
the spatial units under consideration.

In a nutshell, our findings indicate that a higher presence and actions
of CUMA members in a given area has significant and positive

environmental effects both at the extensive and intensive margins.
Greater CUMA membership density and increased use of agroecological
equipment by CUMA members lead to a reduction of pesticide use.
However, no significant effect is observed in terms of an increase in the
use of conventional equipment, suggesting the presence of a rebound
effect.

The rest of the paper is organised as follows. Section 2 presents the
theoretical framework underpinning this investigation. Section 3 in-
troduces the data and describes the empirical design. Section 4 presents
the results and checks their robustness, testing various alternative
specifications and accounting for model selection bias. Section 5 dis-
cusses the findings, outlines future research perspectives and draws
policy implications. Section 6 concludes.

2. Theoretical framework

2.1. Agricultural cooperatives and environmental benefits

Cooperatives are economic enterprises characterised by collective
property and democratic decision-making (the ‘one member one vote’
principle), aimed at improving their members’ welfare (Hansmann,
2000). Unlike investor-owned firms, where potentially remote investors
govern and make strategic decisions based on their economic power (i.
e., the share of equity they hold), cooperatives are governed by collec-
tive action and social interactions between members embedded in
communities (Nilsson et al., 2012).2 Agricultural cooperatives are
voluntary groups of farmers formed in order to benefit from coordinated
production decisions, easier access to inputs and markets, and more
effective lobbying (Di Falco et al., 2008). These cooperatives coordinate
activities either vertically or horizontally (Sexton, 1986). Vertical co-
ordination involves supply and marketing cooperatives that organise
members’ activities upstream and downstream of the value chain,
respectively. Horizontal coordination refers to cooperatives coordi-
nating activities among members at the same stage of the value chain.

Studies addressing the environmental impact of agricultural co-
operatives have largely focused on vertical coordination. These studies
consistently highlight the positive environmental effects of co-
operatives, particularly for marketing cooperatives operating down-
stream of the value chain, which encourage members to adopt
environmentally friendly practices by offering products with enhanced
environmental value to local consumers (Candemir et al., 2021; Cornée
et al., 2024).3 For instance, Ma et al. (2018) find that membership in a
Chinese apple-producing cooperative increases the likelihood of
investing in organic soil amendments. In the same vein, Di Falco et al.
(2008) find a positive relationship between the density of cooperatives
and the diversity of local wheat varieties in Southern Italy. In a case
study conducted on the Swiss cooperative Gran Alpin, Bardsley and
Bardsley (2014) document that the high regard in which members hold
this cooperative stems from its ability to market local, organic cereal
products at a secure premium price, which was instrumental in pro-
moting both local identity and environmental values.

1 Historically, the legal status of CUMAs was created in 1945, and their
development has been a result either of self-help dynamics or of interventionist
public policies aimed at the agricultural sector (Herbel et al., 2015). The vast
majority of CUMAs belong to a regional federation to benefit from legal, ac-
counting and technical support.

2 Unlike investor-owned firms, cooperatives are characterised by a ‘bundle of
rights’ that strongly restricts the alienation right, which is the possibility of
selling the rights to both residual control and residual earnings (Périlleux and
Nyssens, 2017). Standard economic theory posits that without well-defined
alienation rights ensure efficient market mechanisms, coordination among
members or owners is doomed to failure, leading to organisational inefficiency
(Alchian and Demsetz, 1972). The theoretical developments of Ostrom and
colleagues argue strongly against this view, demonstrating that, provided the
adoption of appropriate design principles, collective action can be a functional
coordination mechanism to ensure organisational efficiency (Ostrom, 1990;
Ostrom et al., 1992).
3 More generally speaking, some studies insist on the positive externalities

generated by collective action in less formal structures of governance (e.g.,
Marshall, 2009; Willy and Holm-Müller, 2013).
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Our study extends this literature by examining the case of the most
wide-spread cooperative form of horizontal coordination vehicles,
namely farm machinery cooperatives, or CUMAs (Hansmann, 1999).
Farmers can access machinery resources through various ownership
schemes. Privately, farmers may purchase machinery on their own—if
affordable—or use the service of an agricultural contractor. CUMAs offer
an alternative ownership scheme in which investment decisions and
management are collectively undertaken. While a relatively modest
share (around 10 %) of the total investment in farm machinery and
equipment occurs collectively in CUMAs, about half of all French
farmers participate as CUMA members (Herbel et al., 2015). The
contribution of CUMAs—arising from networks of inter-farmer inter-
actions—to the agroecological transition has largely gone unnoticed due
to the implicit nature of these practices. Yet, recent sociological research
suggests that CUMA members make use of the intensified interpersonal
relationships established through machinery sharing arrangements to
foster mutual aid, facilitate the transfer of experience and, more broadly,
enable social learning processes that may ultimately lead to the real-
isation of agroecological innovations and investments (Lucas et al.,
2019). While farmers generally prefer to work with peers whose profiles
resemble their own, pioneer farmers are open to collaborating with
those of different profiles to explore sociotechnical complementarities
and steepen the learning curve (Lucas and Gasselin, 2023). In what
follows, to establish potential causal mechanisms (Heckman, 2008), we
theorise that the social interactions among CUMA members act as a
potent institutional facilitator for a transition to agroecology.

2.2. Strategic complementarity at the extensive and intensive margins

2.2.1. Strategic complementarity
As defined in the theory of social networks, strategic complemen-

tarity between players in a game suggests that “[…] a player’s incentives
to take an action (or a ‘higher’ action) are increasing in the number of his or
her friends who take the (higher) action […]” (Jackson and Zenou, 2015, p.
98). In our case, this general proposition helps us distinguish between
two channels that explain why a farmer’s use of pesticides is influenced
by the presence and actions of CUMAmembers in his/her vicinity. At the
extensive margin, we contend that the more peers a farmer interacts
with in a structured network (i.e., in a CUMA), the more he/she would
be encouraged to change his/her behaviour towards lower pesticide use.
At the intensive margin, we contend that the higher the level of activity
within the network (i.e., greater use of CUMA assets) by a farmer’s peers,
the more the farmer is incentivised to reduce his/her pesticide use. We
now elaborate on these mechanisms—established at the individual
level—and derive testable hypotheses at an aggregated level, that of
spatial units.

2.2.2. Extensive margin
Why should farmers reduce their pesticide use more if they are in a

spatial unit with a higher number or proportion of CUMA members? We
argue that CUMAs enable strategies to reduce pesticide use through
improved interpersonal relationships between members resulting from
the design and implementation of machinery-sharing arrangements. The
starting point of our argument is that farmers with heterogeneous
pesticide reduction strategies coexist, whether or not they belong to a
CUMA. A logic of economic optimisation, a logic of innovation and an
environmental logic based on health considerations can typically be
identified (Chantre and Cardona, 2014). Regardless of the underlying
logic, farmers tend not to make radical changes, but rather they adopt
new practices gradually. Technological and economic uncertainties may
explain the reluctance to reduce pesticide use (Bjørnåvold et al., 2022).
Moreover, the drivers of pesticide reduction appear to depend less on
individual farmer characteristics and more on structural and relational
factors at the local level; with grassroots collective action among farmers
as a key driver, where certain farmers set an example for others (Young
et al., 2022). Being a member of a CUMA may foster a mimetic effect

whereby observing and imitating peers encourages farmers to reduce
their misuse or overuse of pesticides (Liu and Wu, 2022). CUMAs likely
increase members’ ‘perceived behavioural control’ not only by demon-
strating alternatives but also by empowering farmers to gain more
control over their own production and by promoting more planned
pesticide applications (Bakker et al., 2021; Meunier et al., 2024). Like-
wise, the individual planning resulting from collective action in CUMAs
can eliminate inefficiencies and reduce pesticide use (Kahindo and
Blancard, 2022). Taken together, these factors strongly suggest that, far
from being trivial, the by-product of peer-to-peer interactions in CUMAs
enable members to enhance their sociotechnical capacities and increase
their willingness to adopt ecological innovations (De Marchi, 2012).

The mechanisms described above, which occur at the CUMA level
among heterogeneous members, can be replicated at the local level
between CUMA farmers and non-CUMA farmers. CUMAs can be seen as
laboratories, from which non-CUMA farmers in the same area may
eventually benefit. This echoes the role often attributed to cooperatives
and social and solidarity economy enterprises as a yardstick for trans-
formative change (Novkovic, 2022; Rousselière et al., 2024). In addi-
tion, there are potential spill-over effects whereby the peer-to-peer
dynamics observed in CUMAs in one area can influence (non-) CUMA
farmers in neighbouring areas (Luo et al., 2017). Overall, this suggests
that a peer-to-peer effect, associated with the density of CUMAmembers
should be detectable at both the local and extra-local levels. Because of
observational equivalence, this effect could result from interactions
occurring within and/or outside CUMAs in their operating areas and in
neighbouring areas. This brings us to our first hypothesis:

H1. Extensive-margin mechanism: The higher the number or propor-
tion of CUMA members within farmers in a given area, the greater the
reduction of pesticide use in this area and in neighbouring areas.

2.2.3. Intensive margin
Why should farmers reduce their pesticide use more if they are in a

spatial unit where CUMA members use their CUMA more intensively?
Strategic complementarity suggests that the intensity with which a
farmer invests in and uses CUMA machinery varies as a function of the
average level of use and investment made by other CUMAmembers. This
is consistent with both cooperative and common-pool resource theories,
which posit that stronger economic commitment to the group limits
members’ exit options, reduces discount rates, and conversely increases
members’ exposure to the collective action effects generated by the
group (Ostrom et al., 1994; Fulton and Giannakas, 2001; Ostrom, 2010).
Commitment is particularly binding in CUMAs, where members
contractually agree to a pre-defined number of machine hours when
investing. If members fail to meet the required number of hours, they
may be obliged to compensate the CUMA.4 This means that if the
number of hours for a financially viable investment is not reached, the
investment may not go ahead. If however, on average, members increase
their usage of the CUMA—whether simultaneously or sequentially—,
they can afford technologically advanced machinery that would other-
wise be out of reach with less intensive use. Access to upgraded tech-
nology should enable farmers to improve their technical efficiency and
reduce their reliance on pesticides, which are deemed to be among the
costliest inputs of the production function (Paul et al., 2019). This
proposition holds, under the assumption that there is no rebound effect
(Song et al., 2018). Technological progress can not only enhance
pesticide efficiency but, paradoxically, it can also boost the economic
potential of farms, alter farmers’ behaviour and ultimately raise the
demand for pesticides, thereby partially or fully offsetting any savings
resulting from efficiency gains (Brunelle et al., 2024).

As shown by Cornée et al. (2020), machinery assets in CUMAs can be

4 For this reason, the equivalence between the use of machinery assets and
investment is almost perfect.

S. Cornée et al. Ecological Economics 230 (2025) 108513 

3 



characterised by both a quantitative and qualitative dimension. The
quantitative aspect relates to the volume of machinery available per
member in a CUMA, while the qualitative aspect refers to the types of
machinery available. Machinery assets vary in their environmental and
community impact. Some machinery is considered ‘agroecological
equipment’ because it promotes soil health and fertility and reduces
pesticide use (Lucas et al., 2019). The terms of the quantity-quality
agreements, which is not necessarily a trade-off, vary between
CUMAs. Members may value differently the consequences of their in-
vestment choices—which involve assets that cannot be transferred
outside the CUMA’s area of operation—not only for their occupational
practices but also for the community and sustainability (Askildsen et al.,
2006; Sacchetti, 2015). Furthermore, the nature of the relationship be-
tween CUMAs and the community varies from area to area. Certain
CUMAs, by virtue of their embeddedness in the community in which
they operate, are more subject to local pressure—whether mediated by
members or not—and therefore more inclined to adopt environmentally
friendly strategies (Carchano et al., 2024).

We expect the impact of access to advanced technology through
increased CUMA participation to be magnified when we focus specif-
ically on the adoption of agroecological equipment, for three reasons.
First, such equipment is often more expensive than conventional
equipment (Harris and Fulton, 2000; Wolfley et al., 2011). Second, it
may result in more profound changes to the production function than
conventional machinery, leading to a sharper decline in pesticide use.
Third, agroecological equipment can often serve as a complete substitute
for pesticides (e.g., mechanical weed control)—whereas conventional
equipment merely offers a more efficient use of pesticides (e.g., preci-
sion farming/decision support systems)—, thereby limiting the possi-
bility of a rebound effect. This brings us to our second hypothesis:

H2. Intensive-margin mechanism: The fact that members in a given
spatial unit make more intensive use of their CUMA’s machinery assets,
particularly agroecological equipment, leads to a greater reduction in
pesticide use.

3. Data and methods

3.1. Data

Table 1 defines and describes the sources of the variables used in the
empirical analysis, and Table 2 presents the summary statistics for these
variables. Our data are retrieved from five main sources. First, the data
on pesticide consumption for the years 2015 and 2016 are drawn from
the French National Pesticide Sales Database (Banque nationale des ventes
des distributeurs, BNV–d database). The 2006 law on water and the
aquatic environment requires authorised distributors of plant protection
products to declare their annual sales within the national territory.
These data on pesticide consumption are then used to calculate the
quantity of active substances, based on a repository that indicates the
composition of each product.5 As our baseline model, we use the total
quantity of active substances purchased in the buyer’s postcode area per
hectare of UAA (Substances per UAA hectare). Only 8 % of all postcode
areas—mostly urban—report zero pesticide sales. Moreover, there is
considerable heterogeneity across areas, as shown in Fig. 1.

Second, we use a unique, proprietary dataset obtained from the
National Federation of CUMAs, which provides detailed information, at
the individual CUMA level, including financial statements (balance

sheets and income statements), members, equipment and machinery
assets. We have access to 5793 CUMAs, representing 64 % of all French
CUMAs.6 As described in Table 1, the variables # CUMA members and%
CUMA members indicate the number of CUMA members and the pro-
portion of farmers belonging to a CUMA in a spatial unit (i.e., postcode
area), respectively. We assume that all members of a CUMA are located
within the postcode area of their CUMA. In reality, a tiny minority of
members may reside in a neighbouring postcode area different to that of
their CUMA. Using the residence of CUMA members instead of the
location of CUMAs does not affect the results. The variable # Equipment
per member represents the average volume of equipment (expressed in

Table 1
Definition of variables.

Variable Definition

Dependent variable BNV–d database

Substances per UAA hectare

Active substances contained in plant protection
products purchased by all buyers in the postcode
area / Postcode area’s utilised agricultural area
(UAA) hectares

Independent variables
CUMA variables CUMA proprietary database

# CUMA members Total number of farmers that are members of a
CUMA in the postcode area

% CUMA members Number of CUMAs members / Number of farmers
in the postcode area, in %

# Equipment per member
Average number of equipment items per member
per CUMA at the postcode level

% Agroecological equipment
Average number of agroecological equipment
items out of total number of equipment items used
by members per CUMA at the postcode level, in %

# Members per CUMA Average number of members per CUMA at the
postcode level

Total assets per CUMA
Average total net asset value per CUMA at the
postcode level

Community-related
variables

INSEE CLAP and Assemblée Permanente des
Chambres d’Agriculture

Social economy
Social and solidarity economy establishments /
Total number of public and private sector
establishments in 2015 at the postcode level, in %

Agricultural election turnout
Election turnout to the chambers of agriculture for
each département in 2013, in %

FNSEA voters
FNSEA (Fédération nationale des syndicats
d’exploitants agricoles) voters in the Chambers of
Agriculture in 2013 at the département level, in %

Agroeconomic variables AGRESTE 2010 database, averaged at the
postcode level

UAA
Utilised agricultural area (UAA) in hectares
(arable land, permanent grassland, and permanent
crops) / Total area in hectares, in %

# Farms Number of farms

Farm potential production
Average gross potential agricultural production
per farm, in € 1000

Cereals Cereal surfaces UAA/ Total UAA, in %
Vineyards Vineyard surfaces UAA/ Total UAA, in %

Market gardening/horticulture Market gardening and horticulture surfaces UAA/
Total UAA, in %

Orchards Orchard surfaces UAA/ Total UAA, in %
Grassland Grassland surfaces UAA / Total UAA, in %

Organic/labels

Hectares in organic and traceability labels (i.e.,
Protected Designation of Origin, Protected
Geographical Indication and Red Labels) / Total
UAA (excluding wine-growing productions), in %

Weather variables US Agroclim Database at the postcode level
Winter/ Spring/ Summer/
Autumn precipitation Total seasonal precipitation, in millimetres

Winter/ Spring/ Summer/
Autumn temperature Average seasonal temperature, in Celsius degrees

5 The total quantity of active substances includes, in particular, the most
environmental harmful substances labelled as ‘toxic, very toxic, carcinogenic or
mutagenic substances’.

6 To reduce the effect of possibly spurious outliers, we performed a winsor-
isation transformation at the 99th percentile for variables # CUMA members and
# Equipment per member. For these variables, all values above the 99th
percentile were set to the 99th percentile.

S. Cornée et al. Ecological Economics 230 (2025) 108513 

4 



number of items) owned per member per CUMA at the postcode level.
The variable % Agroecological equipment represents the average share of
agroecological equipment in the total machinery used by members per
CUMA at the postcode level. Based on a classification provided by the
National Federation of CUMAs, we can calculate the proportion of
equipment owned and used by CUMA members that promotes agro-
ecological practices, including directly reducing the use of phytosanitary
products, improving soil fertility, promoting farm autonomy (e.g., in
terms of protein, fodder or seeds) and developing local marketing
channels.7 The average size of a CUMA is captured by two variables #
Members per CUMA and Total assets per CUMA, which represent the
average number of members per CUMA and the average value of total
assets per CUMA (expressed in natural logarithm) at the postcode level.
Examining these variables allows us to characterise CUMA member
activity. 45% of all spatial units contain at least one CUMA. There are on
average 46.27 CUMA members per postcode area, though the number
varies widely across postcode areas, with a standard deviation of 91.60.
CUMAs are a highly popular method for sharing machinery; indeed,
38.29 % of farmers are CUMA members. On average, a CUMA member
uses 0.77 pieces of equipment, of which 14.62 % are considered as ag-
roecological. The average size of a CUMA is 16.48 members, with total
assets averaging €129,083.

Third, we use three variables to capture the local (agricultural)
community context in which CUMAs operate, both culturally and

politically. The variable Social economy indicates whether CUMA dy-
namics can be found in areas characterised by a vibrant fabric of
community-led initiatives. It is defined as the number of social economy
(short for social and solidarity economy) establishments divided by the
total number of public and private establishments (9.72 %) and is
computed using data retrieved from the CLAP survey conducted by
INSEE (Institut national de la statistique et des études économiques) in 2015.
Social economy includes cooperatives, non-profits and mutuals, which
are collective organisations owned and controlled by their members. As
democratic organisations rooted in communities, they play a key role in
fostering local initiatives that address social needs and aspirations that
are neither met by the state nor the market (Punt et al., 2022; Ziegler
et al., 2023; Rousselière et al., 2024). Additionally, the variables Agri-
cultural election turnout and FNSEA voters aim to capture the type of
farmers’ unionism and agricultural system preferred in a given CUMA
area. These variables are based on data from the French Permanent
Assembly of the Chambers of Agriculture (Assemblée permanente des
chambres d’agriculture) for the year 2013. A high election turnout with a
significant vote in favour of the main farmers’ union, FNSEA (Fédération
nationale des syndicats d’exploitants agricoles), could indicate an area in
which the mainstream agricultural system dominates and in which there
is less diversity in terms of farmers’ unionism (Cordellier, 2008; Sal-
horgne, 2008). On average, 58.34 % of farmers vote for FNSEA in
agricultural elections.

Fourth, we include a set of agroeconomic control variables that align
with the state of the art in agricultural economics. These control vari-
ables are sourced from the AGRESTE 2010 database, which corresponds
to the data collected by the French Ministry of Agriculture’s statistical
service during the 2010 agricultural census. The percentage of UAA in

Table 2
Descriptive statistics.

Variables Obs. Mean Std. Dev. Min Max

Dependent variable
Substances per UAA hectare
Total 9296 7.35 35.97 0 1689.67
Toxic, very toxic, carcinogenic or mutagenic 9296 1.55 9.07 0 581.83
Independent variables
CUMA variables
# CUMA members 9296 46.27 91.60 0 502
% CUMA members 9296 38.29 37.10 0 100
# Equipment per member 9296 0. 77 1.18 0 5.8
% Agroecological equipment 9296 14.62 18.50 0 100
# Members per CUMA 9296 16.48 27.39 0 148.4
Total assets per CUMA 9296 129,083.4 232,764.2 0 6,178,700
Community-related variables
Social economy 9296 9.54 4.35 0 40.42
Agricultural election turnout 9296 53.81 6.82 40.49 75.23
FNSEA voters 9296 58.34 10.45 28.88 81.08
Agroeconomic variables
UAA 9296 48.87 27.67 0.05 451.29
# Farms 9296 82.43 92.53 0 1324
Farm potential production 9296 103.68 78.52 0.2 1374.62
Cereals 9296 19.10 26.72 0 100
Vineyards 9296 4.92 16.53 0 100
Market gardening/horticulture 9296 0.78 5.24 0 99.16
Orchards 9296 0.99 5.30 0 76.60
Grassland 9296 29.72 28.50 0 100
Organic/labels 9296 0.06 0.16 0 3.69
Weather variables
Winter precipitation 9296 158.61 178.61 6.28 1948.97
Spring precipitation 9296 150.94 178.30 6.92 1961.76
Summer precipitation 9296 109.23 126.00 1.15 1191.58
Autumn precipitation 9296 138.86 152.22 4.22 1323.84
Winter temperature 9296 5.24 2.23 − 6.75 10.81
Spring temperature 9296 10.06 1.79 − 3.07 15.05
Summer temperature 9296 19.11 2.07 7.33 24.93
Autumn temperature 9296 11.50 1.74 0.77 17.69

Note: The variables # CUMA members and # Equipment per member are winsorised at the 99th percentile.

7 This classification was created by the National Federation of CUMAs
(FNCUMA) at the request of the French Ministry of Agriculture, in the context of
Law No. 2014–1170 of 13 October 2014 on the future of agriculture, with the
aim of facilitating the practical implementation of agroecology in order to
achieve economic, environmental and social performance on French farms.
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total area (UAA),8 the number of farms (# Farms) and the potential
agricultural production per farm in thousands of euros (Farm potential
production)9 serve as indicators for the level of agriculture activity in
each postcode area. On average, the UAA represents 48.87 % of the total
postcode area, and there are 82.43 farms per postcode area. In addition
to these farm characteristics, the existing literature also indicates that
the use of pesticides is influenced by the type of landscape and land
cover characteristics in a given area (Skevas et al., 2013; Larsen et al.,
2015; Larsen and Noack, 2017; Zhang et al., 2018; Larsen and McComb,
2021). Areas characterised by high landscape diversity typically exhibit
lower pesticide demand compared to more homogeneous areas, which
are often more susceptible to pests and natural enemies. The AGRESTE
2010 database provides two indicators for identifying the type of land-
scape and land cover characterising each hectare of UAA. First, the
hectares of UAA are classified by production type, i.e., their type of
technical-economic orientation, which includes cereal field crops,
vineyards, market gardening and horticulture, orchards, or livestock.
More specifically, a given farm’s UAA is considered to be specialised if
one type of production exceeds two thirds of its total production
(calculated in terms of standard gross production). If a type of produc-
tion accounts for less than two thirds of its total production, the farm’s
UAA is classified as unspecified/diversified. The second indicator is the
proportion of UAA hectares covered by permanent grassland. Therefore,
in order to characterise the type of landscape and land cover for one
hectare of UAA, we include these two indicators in our empirical anal-
ysis. The technical-economic orientations (i.e., Cereals, Vineyards, Mar-
ket gardening/horticulture and Orchards) reflect the percentage of UAA in
each postcode area dedicated to cereal field crops (19.10 %), vineyards
(4.92 %), market gardening/horticulture (0.78 %) and orchards (0.99

%). Livestock production is excluded due to a high correlation with the
variable Grassland (correlation coefficient of 0.75).10 On average,
grassland represents 29.72 % of the UAA. Finally, the agroeconomic
control variables also include the variable Organic/labels, which corre-
sponds to the share of the UAA dedicated to organic or traceability-
labelled crops (i.e., protected designation of origin, protected
geographical indication and Red Label production). Production quality
schemes of this type, which are expected to reduce pesticide use (Chèze
et al., 2020), represent on average 0.06 % of the UAA at the postcode
level.

Fifth, the weather control variables are drawn from the US Agroclim
database provided by INRAE (Institut national de recherche pour l’agri-
culture, l’alimentation et l’environnement). Studies examining the eco-
nomic impact of climate change on crop farming (especially in Europe)
using a Ricardian approach mainly use two types of indicators: growing
season degree-days, on the one hand, and total precipitation or four-
season average temperature and precipitation variables (often
modelled with non-linear and quadratic relationships), on the other
hand. Four-season models are more accurate when it comes to control-
ling for climate effects outside the growing season (Massetti et al.,
2016). To avoid correlation issues, recent studies emphasise the
importance of seasonal climate data, especially on a European conti-
nental scale, due to the importance of winter crops (Van Passel et al.,
2017; Moretti et al., 2021). Indicators focused solely on the growing
season may underestimate the importance of cold temperatures in
winter—which are relevant to European agriculture (Vaitkeviciute
et al., 2019). In addition to direct effects on productivity, climate con-
ditions also indirectly affect pesticide use, in that the climate influences
insect and crop pest population dynamics (Deutsch et al., 2018;

Fig. 1. Active substances per UAA hectare and number of CUMAs per postcode area, 2015–2016.

8 The utilised agricultural area abbreviated as UAA, is a standardised concept
in European agricultural statistics. UAA is the total area, expressed in hectares,
taken up by arable land (temporary pastures, fallow land, greenhouse crops,
family gardens, etc.), permanent grassland and permanent crops (vineyards,
orchards, etc.) used by the holding, regardless of the type of tenure or of
whether it is used as a part of common land.
9 This represents more precisely the potential value of production per hectare

(in €) for each farm at production prices and yields without financial aid.

10 This means that the average per postcode area of the sum of the technical-
economic orientations retained for our analysis (expressed as a percentage of
the total UAA at the postcode level) is 25.79 %. The difference between this
percentage and 100 % corresponds to the technical-economic orientation
‘livestock’ (19.79 %) and to an unspecified/diversified technical-economic
orientation. Note that our analysis yields almost similar findings when we
also include ‘livestock’. However, we prefer not to do so in order to avoid any
multicollinearity problem.
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Lehmann et al., 2020). For example, cold temperatures reduce pest
incidence in Europe. Therefore, we include seasonal temperature and
precipitation data at the postcode level.

3.2. Regression models

In order to identify the specific influence of CUMAs on the overall use
of pesticides in a given area, we estimate two panel data regression
model specifications, which are straightforward extensions of the stan-
dard weather approach to pesticide demand.

3.2.1. Extensive-margin model
To test hypothesis H1, we use the model displayed in Eq. (1), which

examines how the density of CUMA members (vector CEM) as well as
agroeconomic covariates (vector A) and weather covariates (vector W)
influence pesticide use over the 2015–2016 period for the 4653 postcode
spatial units of France. This postcode random-effects model, which is
estimated with robust standard errors clustered at the postcode level to
control for heteroscedasticity and temporal autocorrelation, is specified
as follows:

Qit = cst+ γʹCEM
it + βʹAi + θʹWit +αi + εit (1)

Q represents the total yearly quantity of active substances in natural
logarithm, per hectare of UAA (Substances per UAA hectare). Vector CEM

includes two variables used to approximate the density of CUMA
members at the spatial unit level: the number of CUMA members (#
CUMA members) and the proportion of farmers involved in a CUMA (%
CUMA members). Vector CEM also includes two variables that control for
CUMA size: # Member per CUMA and Total assets per CUMA. Vector A
includes the above-mentioned list of agroeconomic controls. Agricul-
tural activity is captured by the variables UAA, # Farms and Farm po-
tential production, while the landscape and land use characteristics of a
spatial unit are measured by the variables accounting for technical-
economic orientations (i.e., Cereals, Vineyards, Orchards and Market
gardening/horticulture), the variable Grassland and the variable Organic/
labels. All these ratios are expressed in terms of hectares of UAA at the
postcode level. Vector W controls for seasonal temperatures and pre-
cipitations at the postcode level.

To address potential endogeneity between the presence of CUMA
members and other community-related factors, we use a ‘plug-in’
method, which, under certain conditions, falls under the broader cate-
gory of control function approaches (Wooldridge, 2015). The two-stage
residual inclusion (2SRI) method developed by Terza et al. (2008) is a
semi-parametric approach that is more efficient than other methods,
such as the two-stage least square (2SLS) method, because it better ac-
commodates the specific nature (binary, count, ordinal, etc.) of the
endogenous explanatory variable (Wooldridge, 2015: 429). In the first
stage, we estimate the number or proportion of CUMAmembers by using
the agroeconomic controls from Eq. (1) and the variables intended to
account for the community-related factors (i.e., Social economy, Agri-
cultural election turnout and FNSEA voters). In the second stage, we add
the generalised residuals of the first stage to the baseline model as dis-
played in Eq. (1) to obtain a consistent estimate of the effect of CUMA
members at the extensive margin, with bootstrap-corrected standard
errors. As stated by Wooldridge (2015), the parameters from plug-in
methods applied to cross-section data can be interpreted as average
causal effects.

To account for potential externalities arising from peer-to-peer
cooperation, i.e., the possibility that CUMA members in one spatial
unit influence those in neighbouring units, we run alternative specifi-
cations of Eq. (1) in which vector CEM also includes either the number of
CUMA members or their proportion (expressed as a percentage of
farmers) in neighbouring postcode areas. The adjacency matrix used to
define the neighbourhood corresponds to the spatially lagged variables
of # CUMA members and % CUMA members in neighbouring postcode

areas.

3.2.2. Intensive-margin model
To hypothesis H2, we use the model displayed in Eq. (2), which

gauges how the intensity of use of a CUMA’s (agroecological) equipment
by its members affects pesticide use. This model is estimated with the
following equation:

Qit = cst+ γʹCIM
it + βʹAi + θʹWit + αi + εit (2)

In the specification shown in Eq. (2), the dependent variable as well
as the agroeconomic and weather covariates in vectors A andW remain
unchanged from Eq. (1). However, vector CIM includes proxies used to
capture the intensive-margin mechanism, i.e., # Equipment per member
and % Agroecological equipment. Vector CIM also controls for CUMA size:
#Member per CUMA and Total assets per CUMA. To account for potential
endogeneity issues and to adequately isolate the impact of more or less
intensive use of a CUMA (agroecological) equipment by its members
from other community-related effects, we use the same two-stage con-
trol function methodology as employed for the extensive-margin model.
In the first stage, we estimate # Equipment per member and % Agroeco-
logical equipment, using the agroeconomic and community-related fac-
tors. In the second stage, we inject the generalised residuals from the
first stage into the model specified in Eq. (2).

4. Results

4.1. Strategic complementarity at the extensive margin

4.1.1. Baseline model
Our hypothesis H1 anticipates that a higher density of CUMA

members within an area will lead to closer, peer-to-peer sociotechnical
interactions, which in turn will promote the adoption of ecological
practices. Table 3 presents various specifications of Eq. (1) and aims to
gauge this impact produced by inter-farmer interactions while control-
ling for an array of confounding agroeconomic and weather factors and
endogeneity issues. Column (1) examines the effect of strategic
complementarity at the extensive margin by analysing the number of
CUMA members at the postcode level. The negative coefficient on #
CUMA members is markedly significant both statistically (at the 1 %
level) and economically. In line with our econometric causality strategy
(Heckman, 2008), the results indicate that the presence of one addi-
tional CUMA member in a given postcode area decreases pesticide use
by about 0.07 %.11 Column (2) also examines the peer-to-peer density at
the territorial level by including the proportion of CUMA members
among farmers at the postcode level. The negative coefficient (also
significant at the 1 % level) on % CUMA members indicates that a 1 %
increase in the proportion of CUMA members in a given postcode area
decreases pesticide use by about 0.08 %.

Regarding the control variables, the CUMA-related covariates are
uninformative, as none of them are consistently significant. The agro-
economic covariates indicate that the quantity of pesticides used is
logically dependent on the level of agricultural activity, as measured by
UAA, # Farms and Farm potential production. The type of production also
has the expected effect: pesticide use is driven upwards by Cereals,
Vineyards and Orchards, and downwards by Grassland. Quality and
traceability based farming approaches (proxied by Organic/labels) are
associated with a decrease in pesticide use. The weather covariates have
the anticipated coefficients in terms of both sign and significance.

4.1.2. Control function
The estimates in columns (3) and (4) in Table 3 correspond to the

11 This actually corresponds to the elasticity provided by the estimated coef-
ficient for a continuous variable in a regression with a log-transformed
dependent variable using natural logarithm (Van Garderen and Shah, 2002).
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application of the 2SRI method. The first-stage regressions are presented
in columns (1) and (2) in Table A1 in Appendix A. These regressions—a
Poisson random-effects model in column (1) and a Tobit model in col-
umn (2)—reveal the factors driving the territorial presence of CUMA
members (either in absolute or relative value). This plausibly allows us
to better understand the community dynamics of the areas where CUMA
members are located and captures farmers’ motivations at the aggre-
gated postcode level. As expected, areas with more active social

economy initiatives (Social economy) show a higher presence of CUMA
members. Conversely, CUMA members are less prevalent in areas with a
stronger attachment to the mainstream agricultural system, as indicated
by higher election turnout and a greater percentage of votes in favour of
the dominant farmers’ union (i.e., FNSEA). By design, the variable
FNSEA voters also reflects the diversity of farmers’ axiological views. The
negative coefficient on FNSEA voters confirms that CUMA members
flourish in areas with pluralistic views on agriculture (Salhorgne, 2008).

Table 3
Strategic complementarity at the extensive margin.

Dependent variable: Substances per UAA ha (log)

Baseline Control Function Contiguity Matrix

(1) (2) (3) (4) (5) (6)

CUMA variables
# CUMA members − 0.0007*** . − 0.0008*** . − 0.0005*** .

(0.0001) (0.0001) (0.0001)
% CUMA members − 0.0008** − 0.0009*** 0.0010

. (0.0423) . (0.0001) . (0.0007)
# Members per CUMA − 0.0009 − 0.0021* − 0.0011 − 0.0020 − 0.0004 − 0.0019

(0.0011) (0.0012) (0.0013) (0.0014) (0.0011) (0.0012)
# Members per CUMA2 1.4e-5** 1.3e-5 1.6e-5 1.3e-5 1.1e-5 1.2e-5

(9.9e-06) (1e-05) (1.3e-05) (1.3e-05) (9.7e-06) (9.9e-06)
Total assets per CUMA (ln) − 0.0005 0.0014 4.3e-6 0.0016 0.0002 0.0016

(0.0022) (0.0023) (0.0024) (0.0024) (0.0022) (0.0023)
Residuals: # CUMA members − 0.0006**

(0.0003)
Residuals: % CUMA members 1.428

(1.049)
# CUMA members in neighbouring postcode areas − 0.0007***

(0.0001)
% CUMA members in neighbouring postcode areas − 0.0031***

(0.0007)
Agroeconomic variables
UAA 0.0029*** 0.0029*** 0.0029*** 0.0029*** 0.0032*** 0.0031***

(0.0006) (0.0006) (0.0003) (0.0003) (0.0006) (0.0006)
# Farms 0.0004*** 0.0002* 0.0004*** 0.0002*** 0.0005*** 0.0002**

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Farm potential production 0.0008*** 0.0008*** 0.0008*** 0.0008*** 0.0008*** 0.0007***

(0.0002) (0.0002) (0.0001) (0.0001) (0.0002) (0.0002)
Cereals 0.0076*** 0.0076*** 0.0075*** 0.0076*** 0.0074*** 0.0075***

(0.0005) (0.0005) (0.0002) (0.0002) (0.0005) (0.0005)
Vineyards 0.0271*** 0.0273*** 0.0271*** 0.0272*** 0.0269*** 0.0268***

(0.0008) (0.0008) (0.0005) (0.0005) (0.0008) (0.0008)
Market gardening/horticulture 0.0266*** 0.0265*** 0.0266*** 0.0265*** 0.0265*** 0.0265***

(0.0047) (0.0047) (0.0022) (0.0022) (0.0047) (0.0048)
Orchards 0.0352*** 0.0352*** 0.0352*** 0.0352*** 0.0347*** 0.0341***

(0.0026) (0.0026) (0.0012) (0.0012) (0.0026) (0.0026)
Grassland − 0.0079*** − 0.0078*** − 0.0079*** − 0.0078*** − 0.0077*** − 0.0074***

(0.0006) (0.0007) (0.0003) (0.0003) (0.0006) (0.0006)
Organic/labels − 0.0035*** − 0.0034*** − 0.0034*** − 0.0034*** − 0.0033*** − 0.0032***

(0.0007) (0.0007) (0.0003) (0.0003) (0.0007) (0.0007)
Weather variables
Winter precipitation 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Spring precipitation 0.0001*** 0.0002*** 0.0001*** 0.0001*** 0.0001*** 0.0001***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Summer precipitation − 0.0001 − 0.0001 − 0.0001 − 0.0001 − 0.0001 − 0.0001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Autumn precipitation 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002***

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Winter temperature 0.0279*** 0.0283*** 0.0281*** 0.0283*** 0.0285*** 0.0292***

(0.0041) (0.0041) (0.0042) (0.0042) (0.0041) (0.0041)
Spring temperature 0.0813*** 0.0819*** 0.0815*** 0.0818*** 0.0837*** 0.0847***

(0.0098) (0.0098) (0.0109) (0.0110) (0.0098) (0.0098)
Summer temperature − 0.0301*** − 0.0303*** − 0.0302*** − 0.0302*** − 0.0314*** − 0.0314***

(0.0068) (0.0068) (0.0080) (0.0080) (0.0068) (0.0068)
Autumn temperature − 0.0283*** − 0.0287*** − 0.0282*** − 0.0286*** − 0.0274*** − 0.0282***

(0.0092) (0.0092) (0.0104) (0.0104) (0.0092) (0.0092)
Random effects Postcode Postcode Postcode Postcode Postcode Postcode
# Observations 9296 9296 9296 9296 9296 9296
# Clusters 4648 4648 4648 4648 4648 4648
AIC 10,354.7 10,370.9 10,354.4 10,372.3 10,338.7 10,336.3

Notes: Random-effects estimations. Regression coefficients and clustered standard errors are in parentheses. Intercepts are not reported. *** p < 0.01, ** p < 0.05, * p
< 0.1. Columns (3) and (4) display bootstrapped clustered standard errors.
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Most agroeconomic variables also have intuitive coefficients. For
example, CUMA membership is understandably more prevalent in areas
with a higher proportion of UAA and a greater number of farms, as
indicated by the positive coefficients on the variables UAA and # Farms.
CUMA membership also tends to thrive in areas characterised by
quality-oriented farming practices (Organic/ labels). The results of the
second stage regressions, which include the residuals of the first-stage
regression, are displayed in columns (3) and (4) in Table 3. The re-
sults hold, and the effects of both # CUMA members and % CUMA
members are even stronger, thereby indicating that the baseline results
presented in columns (1) and (2) are conservative estimates.

4.1.3. Contiguity matrix
Columns (5) and (6) offer an alternative strategy for capturing the

mechanism of complementarity strategy at the extensive margin, i.e., by
examining the impact of CUMA member density in neighbouring post-
code areas on pesticide use in a given area. The negative coefficients
(significant at the 1 % level) on # CUMA members in neighbouring post-
code areas and % CUMA members in neighbouring postcode areas provide
additional evidence of the influential effect produced by peer-to-peer
interactions. This suggests that inter-farmer cooperation structured by
CUMAs not only promotes pesticide reduction within a given area, but
also extends its influence towards neighbouring areas.

4.2. Strategic complementarity at the intensive margin

4.2.1. Baseline model
Our hypothesis H2 anticipates that, within a spatial unit, more

intensive use of a CUMA’s machinery assets by its members, particularly
agroecological equipment, will drive a greater reduction in pesticide
use. In Table 4, we put this hypothesis to the test by estimating Eq. (2).
The effect of strategic complementarity at the intensive margin is
captured the variables # Equipment per member and % Agroecological
equipment. The agroeconomic and weather factors controlled for are
similar to those included in Table 3. The nonsignificant coefficient on #
Equipment per member in column (1) in Table 4 indicates that more
intensive use of a CUMA’s total equipment by its members has no impact
on the use of pesticides, potentially highlighting a rebound effect. In
unreported alternative specifications,12 we found that these nonsignifi-
cant results persist when the amount of equipment per member is
measured in monetary value rather than volume. By contrast, the
negative coefficient (significant at the 5 %) on % Agroecological equip-
ment in column (2) reveals that the effect of strategic complementarity at
the intensive margin only operates for agroecological equipment. At the
intensive margin, the qualitative aspects of the collectively owned ma-
chinery used by CUMA members, have a more decisive influence than
the quantitative aspects. Regarding the control variables, as shown in
Table 4, the CUMA-related, agroeconomic and weather covariates
behave almost similarly to those displayed in Table 3 and thus have the
expected signs.

4.2.2. Control function
The estimates in columns (3) and (4) in Table 4 corresponds to the

application of the 2SRI method. The first-stage regressions, displayed in
columns (3) and (4) in Table A1 in Appendix A, use Poisson random-
effects models to decipher the community-related and agroeconomic
determinants driving the intensity of CUMA equipment use. Generally
speaking, the same variables influence both categories of equipment (i.
e., total and agroecological). Social economy has a positive impact, while
FNSEA voters has a negative impact, further reinforcing the idea that
community-related variables are good predictors of CUMA dynamics at
both the intensive and extensive margins, and the explanations given in
Section 4.1 remain valid here. Most agroeconomic variables also have

Table 4
Strategic complementarity at the intensive margin.

Dependent variable: Substances per UAA ha (log)

Baseline Control Function

(1) (2) (3) (4)

CUMA variables
# Equipment per
member

0.0031 0.0054 − 0.0039 0.0051

(0.0047) (0.0047) (0.0057) (0.0056)
% Agroecological
equipment

− 0.0025** . − 0.0025***

. (0.0006) (0.0002)
# Members per
CUMA

− 0.0027** − 0.0021* − 0.0028** − 0.0021

(0.0012) (0.0012) (0.0015) (0.0015)
# Members per
CUMA2

1.6e-05 1.2e-05 1.6e-05 1.2e-05

(9.9e-06) (9.9e-06) (1.2e-05) (1.3e-05)
Total assets per
CUMA (ln)

− 0.0005 0.0031 0.0005 0.0032

(0.0023) (0.0025) (0.0028) (0.0029)
Residuals: #
Equipment per
member

. . − 0.0132
(0.0101)

− 0.0056
(0.0257)

Residuals: %
Agroecological
equipment

. . . 0.0178

(0.0678)
Agroeconomic
variables
UAA 0.0028*** 0.0029*** 0.0029*** 0.0029***

(0.0006) (0.0006) (0.0003) (0.0003)
# Farms 0.0002* 0.0002* 0.0002*** 0.0002***

(0.0001) (0.0001) (0.0001) (0.0001)
Farm potential
production

0.0008*** 0.0008*** 0.0008*** 0.0008***

(0.0002) (0.0002) (0.0001) (0.0001)
Cereals 0.0077*** 0.0077*** 0.0077*** 0.0076***

(0.0005) (0.0005) (0.0002) (0.0002)
Vineyards 0.0275*** 0.0272*** 0.0275*** 0.0272***

(0.0008) (0.0008) (0.0004) (0.0004)
Market gardening/
horticulture

0.0267*** 0.0267*** 0.0267*** 0.0267***

(0.0047) (0.0047) (0.0017) (0.0017)
Orchards 0.0357*** 0.0356*** 0.0357*** 0.0356***

(0.0026) (0.0026) (0.0013) (0.0013)
Grassland − 0.0078*** − 0.0078*** − 0.0078*** − 0.0077***

(0.0006) (0.0007) (0.0003) (0.0003)
Organic/labels − 0.0035*** − 0.0035*** − 0.0035*** − 0.0035***

(0.0007) (0.0007) (0.0003) (0.0003)
Weather
variables
Winter
precipitation

0.00004 0.00004 0.00004 0.00004

(0.000) (0.000) (0.000) (0.000)
Spring
precipitation

0.0001*** 0.0001*** 0.0001*** 0.0001***

(0.000) (0.000) (0.000) (0.000)
Summer
precipitation

− 0.0001 − 0.0001 − 0.0001 − 0.0001

(0.000) (0.000) (0.000) (0.000)
Autumn
precipitation

0.0002*** 0.0002*** 0.0002*** 0.0002***

(0.0001) (0.0001) (0.0001) (0.0001)
Winter
temperature

0.0279*** 0.0281*** 0.0279*** 0.0281***

(0.0041) (0.0041) (0.0042) (0.0042)
Spring
temperature

0.0813*** 0.0815*** 0.0813*** 0.0815***

(0.0098) (0.0098) (0.0111) (0.0112)
Summer
temperature

− 0.0302*** − 0.0304*** − 0.0304*** − 0.0304***

(0.0068) (0.0068) (0.0082) (0.0082)
Autumn
temperature

− 0.0292*** − 0.0296*** − 0.0292*** − 0.0296***

(0.0092) (0.0092) (0.0109) (0.0101)

(continued on next page)
12 The results are available upon request to the authors.
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meaningful coefficients. For example, the positive and significant effect
of Farm potential production suggests that members make a greater use of
CUMA equipment in areas where agriculture is sufficiently developed
and has defined mechanisation needs. Areas specialised in specific types
of production (Cereals, Vineyards, Market gardening/horticulture and Or-
chards) are less conducive to CUMA utilisation, whereas more diversified
farming systems (Grassland) increase the intensity of equipment use.
Interestingly, Organic/labels has a positive and significant impact on %
Agroecological equipment but no effect on # Equipment per member. The
generalised residuals obtained from the first-stage regressions are
included in the baseline models as displayed in columns (3) and (4) in
Table 4. The results hold, and the effect of % Agroecological equipment is
even stronger, thereby confirming that our baseline results presented in
columns (1) and (2) are conservative estimates.

4.3. Robustness analyses

4.3.1. Alternative specifications
Here we present the results of alternative specifications that check

the robustness of our main findings. First, we use an alternative proxy
for the dependent variable. For the baseline estimations, we use the total
quantity of active substances. In Table B1 in Appendix B, we replicate
the analysis using a different dependent variable but the same re-
gressors. Specifically, we replace the total quantity of active substances
(Substances per UAA hectare) with a subcategory of the most environ-
mentally harmful substances, such as those classified as toxic, very toxic,
carcinogenic or mutagenic. Overall, the estimations displayed in
Table B1 in Appendix B, are consistent with the baseline results.

Second, we ensure that the positive effect of CUMA dynamics on
reducing the use of pesticides is not determined by the type of produc-
tion carried out in each spatial unit. In Table B2 in Appendix B, we
interact the proxies for strategic complementarity mechanisms at the
extensive and intensive margins with the variables capturing farms’
technical-economic orientations. The results show no variation in the
CUMA effect based on production type, except for areas with market
gardening and horticulture, where the CUMA effect is less pronounced
or non-existent. This is consistent with the inelastic demand for pesti-
cides in ‘speciality crops’ where fewer substitutes exist such as
gardening and horticulture (Böcker and Finger, 2017).

Third, we run additional estimations to assess the sensitivity of our
main results to changes in samples. The dependent variable used in our
baseline regressions (i.e., the total quantity of active substances) is
characterised by a high level of dispersion as shown by its standard
deviation in Table 2. To ensure that our results are not driven by extreme
observations, we exclude postcode spatial units with a zero value for the
variable Substances per UAA hectare and remove the last percentile of this
variable’s distribution to exclude its highest values. The results shown in
Table B3 in Appendix B, are similar to those from the baseline
regressions.

Finally, we check the consistency of our findings using a different
model specification. In Table B4 in Appendix B, we include additional

random effects, namely for the Petites Régions Agricoles (PRAs), defined
by the Ministry of Agriculture as small areas characterised by agroeco-
logical homogeneity according to various factors including landscape
diversity (Mouysset et al., 2013). Our results remain robust to this
change in specification.

4.3.2. Model averaging and multi-model inference
Because we test the two effects of strategic complementarity

sequentially, our results may be subject to omitted variable bias, data
dredging, model uncertainty, and, more generally, model selection bias
(Chatfield, 1995). Significant extensive-margin effects may simply be
artefacts due to not simultaneously controlling for intensive-margin ef-
fects, and vice versa. Model uncertainty arises when one theory does not
rule out the other. These various problems can lead to biased statistical
inferences and over-optimistic standard errors, since the results do not
take into account the complete set of possible models that could have
been explored (Steel, 2020). To address these various problems, we
develop a frequentist model averaging approach, also known as multi-
model inference (Burnham and Anderson, 2004). This approach has
already been used to identify the best candidate models for assessing
wildlife-friendly gardening practices (Goddard et al., 2013). As shown
by Burnham and Anderson (2004), this approach, when based on an
information criterion such as the Akaike information criterion (AIC),
allows for the estimation of multiple models and has properties similar
to Bayesian model averaging (Steel, 2020).

Using all the variables introduced in our main analysis leads to the
estimation of 72 different models. In order to limit the model space (i.e.,
the number of possible combinations of variables), we systematically
include agroeconomic and weather control variables in all potential
models. We also control for local specialisation in agriculture using
PRAs. Parameters are averaged over all models using the AIC weights,
which indicate the probability that a model is the best among the
candidate set. Standard errors also account for uncertainty in the model
selection process. To implement this procedure, we use the MuMin
package for R developed by Barton (2023).

The main results of this procedure are reported in Table B5 in Ap-
pendix B. Columns (1) and (2) present the full models including all proxy
variables for both extensive- and intensive margin effects, without and
with the PRA random-effects, respectively. Columns (3) and (4) present
the averaged parameters and standard errors with and without con-
trolling for PRA random effects, respectively. Overall, Table B5 indicates
that our main results remain valid. In particular, the model averaging
specifications displayed in columns (3) and (4) provide strong evidence

Table 4 (continued )

Dependent variable: Substances per UAA ha (log)

Baseline Control Function

(1) (2) (3) (4)

Random effect Postcode
areas

Postcode
areas

Postcode
areas

Postcode
areas

# Observations 9302 9302 9302 9302
# Clusters 4653 4653 4653 4653
AIC 10,376.8 10,369.2 10,378.1 10,373.1

Notes: Random-effects estimations. Regression coefficients and clustered stan-
dard errors are in parentheses. Intercepts are not reported. *** p < 0.01, ** p <

0.05, * p < 0.1. Columns (3) and (4) display bootstrapped clustered standard
errors.

Table 5
Hypotheses: test and corroboration.

Hypothesis Test Corroboration

H1. Extensive-margin
mechanism: The higher
the number or
proportion of CUMA
members within farmers
in a given area, the
greater the reduction of
pesticide use in this area
and in neighbouring
areas.

In Table 3: Negative and
significant coefficients on
the variables # CUMA
members and % CUMA
members.

Yes (including control
function, contiguity
matrix, alternative
estimations and
simultaneous testing of
H1 and H2)

H2. Intensive-margin
mechanism: The fact
that members in a given
spatial unit make more
intensive use of their
CUMA’s machinery
assets, particularly
agroecological
equipment, leads to a
greater reduction in
pesticide use.

In Table 4:
Nonsignificant
coefficient on the
variable # Equipment per
member. Negative and
significant coefficient on
the variable %
Agroecological equipment.

Yes (including control
function, alternative
estimations and
simultaneous testing of
H1 and H2)

S. Cornée et al. Ecological Economics 230 (2025) 108513 

10 



that further supports the robustness of our baseline results, as the co-
efficients on our main variables of interest (i.e., # CUMA members, %
CUMA members, # Equipment per member, % Agroecological equipment)
have a consistently significant and negative impact on pesticide
demand.

5. Discussion

5.1. Main findings

Table 5 summarises the extent to which empirical analysis supports
hypotheses H1 and H2. Hypothesis H1 is fully supported, highlighting a
mechanism of strategic complementarity at the extensive margin. A
stronger presence of CUMA members, or a higher proportion of CUMA
members among farmers in a given spatial unit, leads to increased socio-
technical peer interactions and the implementation of norms, based on
processes of imitation and behavioural control, through which farmers
are influenced and incentivised to reduce pesticide use. Interestingly,
this peer-to-peer effect also goes beyond the boundaries of the CUMAs’
areas of operation, spilling over to (non-CUMA) farmers in neighbouring
areas.

Regarding hypothesis H2, more intensive use of CUMAs by their
members does not produce any significant negative effect on pesticide
use per se. In other words, the technical efficiency gains at the farmer
level made possible by an increased volume of shared total equipment,
are not observed, suggesting that they are offset by a potential rebound
effect. In contrast, the proportion of agroecological equipment used by
the members of a CUMA has a negative effect on pesticide use, sug-
gesting that technical efficiency gains and improvements in the pro-
duction function are not plagued by a rebound effect. In short, it is only
for the use of agroecological equipment by CUMA members that a
mechanism of strategic complementarity can be detected at the inten-
sive margin.

Our findings are robust to the inclusion of an array of variables that
account for confounding effects, to the application of a control function
approach, to changes in model specifications, and the treatment of
model selection bias (i.e., model averaging). The two mechanisms of
strategic complementarity are confirmed whether estimated separately
or together in a complete model. Our baseline models show that the
presence of each additional CUMA member in a postcode area leads to a
reduction in pesticide use of 0.07 %. Moving from a postcode area with
zero CUMAmembers to one with an average of 104 CUMAmembers, the
average in areas where there is at least one CUMA, results in a reduction
of 7.28 %. The effect is also noteworthy for agroecological equipment: a
1 % increase in its proportion leads to a 0.25 % decrease in pesticide use.
In general, the elasticities in the reduction in pesticide use related to the
presence of CUMAs are homogeneous across all types of production. The
exception is market gardening and horticulture (with a significantly
lower elasticity), due to the lack of substitutes for pesticide use (Böcker
and Finger, 2017).

5.2. Research perspectives

First, while the extensive-margin mechanism indicates that peer-to-
peer interactions occur among CUMA farmers, our results may also
reflect a yardstick effect, whereby CUMAmembers influence non-CUMA
farmers. This warrants further investigation. For instance, a higher
density of CUMAmembers in a given area may exert additional pressure
on non-CUMA farmers, encouraging them to adopt similar behavioural
norms. This aligns with studies showing that farmers’ willingness to
cooperate in community-based management of natural pest control or
conservation practices depends on the (perceived) proportion of po-
tential cooperators in the area (Marshall, 2009; Stallman and James Jr,
2015). In the same vein, our findings indicate that the reduction in
pesticide use through peer-to-peer CUMA-based interactions is not
confined to the CUMAs’ areas but spill over into neighbouring areas.

Further investigation is needed to understand this phenomenon fully. In
particular, this spill-over effect may not only stem from grassroots ‘peer-
to-peer’ relationships but may also be driven by the federative network
of CUMAs. Cooperative federations are deemed to play a decisive role in
the transfer of experience and knowledge between local cooperative
organisations (Ingram and Simons, 2002).

Second, we cannot rule out the possibility that the intensive-margin
mechanism, associated with the type of equipment a CUMA can afford
based on its members’ participation, is sensitive to local pesticide de-
mand. Such an analysis, based on quantile regressions to detect het-
erogeneous spatial effects of CUMAs, could be conducted with greater
confidence if more comprehensive data were available on the presence
of CUMAs nationwide. In particular, we do not have data for the South-
West of France, which accounts for a large proportion of the national
wine production, and which is a major consumer of pesticides. In this
region, CUMA members may behave differently if they collectively own
more expensive, heavier specialised equipment.

Third, the first-stage regressions used in the control function
approach provide information on the drivers of the CUMA dynamics at
the intensive and extensive margins. The presence and actions of CUMA
members flourish in areas characterised by pluralistic views on agri-
culture, a weaker attachment to the mainstream agricultural system,
diversified farming systems, and developed production quality schemes.
CUMA dynamics are also strongly correlated with community-related
factors, such as the development of other types of social economy or-
ganisations. Further empirical studies are needed to better understand
why farmers become members of a CUMA and their level of participa-
tion in that CUMA.

Fourth, CUMAs are generally regarded as one of the last remaining
arenas where farmers with different farm sizes, farming systems and
axiological viewpoints coexist and interact (Piet et al., 2012; Bokusheva
and Kimura, 2016; Lucas and Gasselin, 2023). This achievement may be
related to members refraining from explicitly communicating the envi-
ronmental benefits of their innovations, thereby preventing ideological
conflict from disrupting sociotechnical exchanges, conducted under the
guise of shared goals, such as enhancing autonomy at the farm level.
This seems especially true in CUMAs where member profiles are highly
diverse, giving rise to a norm of ‘tacit silence’ on the most divisive of
environmental issues (‘keep your ideas in the locker room’) (Lucas et al.,
2019). Fieldwork (e.g., farmer interviews) would be valuable in delving
into these interactions among CUMA members, which are often moti-
vated by distinct axiological systems. Indeed, the amount and forms of
communication within CUMAs can influence both the nature and eco-
nomic outcomes of strategic complementarity among members at the
extensive margin (e.g., the quality of peer-to-peer effects) and at the
intensive margin (e.g., coordination in investment choices).

Fifth, our regressions systematically control for the size of CUMAs (i.
e., number of members) and also include the quadratic term to capture
potential non-linear effects. Although the coefficients on these variables
cannot really be interpreted due to their weak and unstable statistical
power, it can be observed that CUMAs are, on average, characterised by
a small number of members. Small size is a key condition for fruitful
dialogue and interaction between farmers (Nilsson et al., 2012). The
question of how CUMAs deliberately (or not) restrict their size to favour
participation and democracy, while coordinating at upper levels in a
federative network should be investigated further (Cornée et al., 2020).

5.3. Policy implications

Our study sheds new light on effectively reducing the level of
pesticide use in agriculture by unearthing the case of grassroots inter-
farmer cooperation as a game changer. This question has rarely been
considered in the economics literature and in policy measures. Public
policies include prohibitive measures by banning or severely restricting
the use of certain active substances, as the EU has done (Aka, 2017).
Alternatively, differentiated taxation schemes can create leverage and
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effects on pesticide use and therefore increase the acceptability of
pesticide taxes through redistributive measures (Finger et al., 2017). At
the micro level, various approaches examine the decision-making pro-
cess of individual farmers when they need to change their pesticide use
behaviour. Increasingly widespread experimental studies (e.g., discrete
choice experiments) seek to determine the weight of each decision-
making factor, as well as to estimate farmers’ willingness to pay for/
willingness to accept changes in these factors. Sufficiently high pay-
ments are typically required by farmers as a production-risk premium (i.
e., compensation for the increased risk of large production losses) and an
administrative burden premium (Chèze et al., 2020). Our research study
complements these approaches and highlights the importance of col-
lective action in removing obstacles to the adoption of environmentally
friendly practices by farmers.

6. Conclusion

This paper’s main contribution lies in highlighting the environ-
mental benefits of grassroots cooperation in agriculture. Our study fo-
cuses on the French context, which is characterised by both major
environmental challenges due to its high reliance on pesticides, and a
dense web of inter-farmer local interactions, and more specifically
through farm machinery sharing cooperatives (CUMAs). Theoretically,
we argue that these social interactions are strategically complementary
in the sense that that the agroecological practices of a farmer involved in
the CUMA network in a given spatial unit are influenced by the presence
and actions of CUMA members in his/her vicinity. At the extensive
margin, this implies that more peer-to-peer interactions driven by a
higher density of CUMA members foster sociotechnical exchanges
conducive to reducing pesticide use. At the intensive margin, this im-
plies that if members individually make greater use of their CUMA, they
collectively have access to technologically up-to-date machinery,
thereby reducing pesticide use through technical efficiency gains. Our
empirical analysis entirely confirms the extensive-margin mechanism,
even highlighting a spill-over effect whereby peer-to-peer interactions
between CUMA members in a spatial unit influence farmers in neigh-
bouring areas. At the intensive margin, increased utilisation of a
CUMA’s agroecological equipment by its members leads to a reduction
in pesticide use. However, there is no significant result in terms of an
increase in the use of conventional equipment, suggesting that technical
efficiency gains are cancelled out by a rebound effect. Taken together,
our findings support the idea of a ‘hidden agroecological transition’
enhanced by CUMAs (Lucas et al., 2019). While this transition may be
viewed as incremental, the CUMA effect is still remarkable. In particular,
sociotechnical exchanges between peers at local level encourage farmers
to reflect on their practices and therefore offer them a promising way to
shift away from the dominant sociotechnical regime, which is consid-
ered to be hindering to the development of agroecological innovations
(Vanloqueren and Baret, 2009).

Our study echoes previous work conceptualising CUMAs as human-
made common-pool resources (Cornée et al., 2020). While the
extensive-margin mechanism may refer to the way farmers appropriate
the resource flow (i.e., the way farmers use the CUMA machinery as-
sets), the intensive-margin mechanism may correspond to qualitative
changes made to the resource stock (i.e., collective investment in ag-
roecological machinery assets). More generally, our work contributes to
the debate on the plurality of (grassroots) cooperatives’ objectives (Gui,
1991; Fulton and Giannakas, 2013). Cooperatives should be regarded as
organisations that seek not only to promote the mutual interest of their
members (i.e., maximising members’ economic welfare), but also the
well-being of the community (Peredo and Chrisman, 2006; Defourny
and Nyssens, 2010; Plateau et al., 2021).
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Appendix A. Two stage residual inclusion (2SRI) method

Table A1
First-stage estimation of the number of CUMAs.

Dependent variable # CUMA members % CUMA members # Equipment per member % Agroecological equipment

(1) (2) (3) (4)

Community-related variables
Social economy 0.090*** 1.099*** 0.019*** 0.325***

(0.010) (0.124) (0.006) (0.057)
Agricultural election turnout − 0.016** − 0.265*** − 0.003 − 0.077**

(0.007) (0.077) (0.003) (0.038)
FNSEA voters − 0.050*** − 0.816*** − 0.021*** − 0.258***

(continued on next page)
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Table A1 (continued )

Dependent variable # CUMA members % CUMA members # Equipment per member % Agroecological equipment

(1) (2) (3) (4)

(0.005) (0.050) (0.002) (0.025)
Agroeconomic variables
UAA 0.025*** 0.316*** 0.021*** 0.171***

(0.003) (0.023) (0.002) (0.017)
# Farms 0.011*** 0.043*** 0.004*** 0.056***

(0.001) (0.007) (0.001) (0.006)
Farm potential production 0.001 − 0.025*** 0.002*** 0.007**

(0.001) (0.007) (0.001) (0.003)
Cereals 0.002 − 0.196*** − 0.005*** − 0.081***

(0.004) (0.021) (0.001) (0.009)
Vineyards − 0.003 − 0.329*** − 0.004* − 0.185***

(0.003) (0.058) (0.002) (0.013)
Market gardening/horticulture − 0.031*** − 0.349*** − 0.022** − 0.074***

(0.010) (0.029) (0.001) (0.023)
Orchards − 0.021* − 0.711*** − 0.028*** − 0.208***

(0.011) (0.092) (0.009) (0.032)
Grassland 0.012*** 0.019 0.006*** 0.049***

(0.003) (0.023) (0.001) (0.009)
Organic/labels 0.006*** 0.220*** 0.0001 0.036**

(0.002) (0.033) (0.001) (0.016)
Random effects Postcode areas Postcode areas Postcode areas Postcode areas
# Observations 9296 9296 9296 9296
# Clusters 4648 4648 4648 4648
AIC 48,228.2 90,854.6 17,872.2 77,536.3

Notes: (1), (3) and (4) are Poisson random-effects estimation. (2) is a Tobit estimation. Regression coefficients and clustered standard errors are in parentheses. In-
tercepts are not reported. *** p < 0.01, ** p < 0.05, * p < 0.1.

Appendix B. Robustness checks

Table B1
Alternative dependent variable: most environmentally harmful substances.

Dependent variable: Toxic, very toxic, carcinogenic or mutagenic substances per UAA hectare (log)

(1) (2) (3) (4)

CUMA variables
# CUMA members − 0.0006*** . . .

(0.001)
% CUMA members . − 0.0007** . .

(0.0003)
# Equipment per member . . − 0.0023 − 0.00004

(0.0041) (0.0040)
% Agroecological equipment . . . − 0.0020***

(0.0004)
Other CUMA variables Yes Yes Yes Yes
Agroeconomic variables Yes Yes Yes Yes
Weather variables Yes Yes Yes Yes
Random effects Postcode areas Postcode areas Postcode areas Postcode areas
# Observations 9296 9296 9296 9296
# Clusters 4648 4648 4648 4648
AIC 4293.7 4483.6 4322.9 4310.6

Notes: Random-effects estimations. Clustered standard errors are in parentheses. Intercepts are not reported. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table B2
Interaction terms: interacting with types of production.

Dependent variable: Substances per UAA hectare (log)

(1) (2) (3) (4)

CUMA variables
# CUMA members − 0.0008*** . . .

(0.0001)
% CUMA members . − 0.0011** . .

(0.0005)
# Equipment per member . . − 0.0030 0.0057

(0.0064) (0.0047)
% Agroecological equipment . . . − 0.0032***

(0.0007)
Agroeconomic variables

(continued on next page)

S. Cornée et al. Ecological Economics 230 (2025) 108513 

13 



Table B2 (continued )

Dependent variable: Substances per UAA hectare (log)

(1) (2) (3) (4)

Cereals 0.0075*** 0.0074*** 0.0076*** 0.0074***
(0.0005) (0.0006) (0.0005) (0.0005)

Vineyards 0.0269*** 0.0269*** 0.0275*** 0.0269***
(0.0009) (0.0009) (0.0009) (0.0009)

Market gardening/horticulture 0.0249*** 0.0249*** 0.0249*** 0.0251***
(0.0048) (0.0048) (0.0048) (0.0049)

Orchards 0.0370*** 0.0376*** 0.0353*** 0.0363***
(0.0024) (0.0026) (0.0026) (0.0024)

Interaction effects with # CUMA members % CUMA members # Equipment per member % Agroecological equipment
X Cereals 1.4e-6 4.9e-6 0.0002 1.9e-5

(0.000) (0.000) (0.0002) (0.0000)
X Vineyards 8.1e-6 1.7e-5 − 4.4e-5 5.7e-5

(0.000) (0.000) (0.0003) (0.000)
X Market gardening/horticulture 0.0003*** 0.0009*** 0.0115** 0.0007**

(0.0001) (0.0002) (0.0046) (0.0003)
X Orchards 0.0001** − 0.0002 0.0015 -0.0002

(0.0001) (0.0001) (0.0019) (0.0003)
Other CUMA variables Yes Yes Yes Yes
Other agroeconomic variables Yes Yes Yes Yes
Weather variables Yes Yes Yes Yes
Random effects Postcode areas Postcode areas Postcode areas Postcode areas
# Observations 9296 9296 9296 9306
# Clusters 4648 4648 4648 4653
AIC 10,340.6 10,299.5 10,373.9 10,365.9

Notes: Random-effects estimations. Clustered standard errors are in parentheses. Intercepts are not reported. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table B3
Alternative sample: removing atypical individuals in terms of pesticide use.

Dependent variable: Substances per UAA hectare (log)

(1) (2) (3) (4)

CUMA variables
# CUMA members − 0.0007*** . . .

(0.0001)
% CUMA members . − 0.0026*** . .

(0.0003)
# Equipment per member . . - 0.0051 − 0.0003

(0.0056) (0.0055)
% Agroecological equipment . . . − 0.0042***

(0.0006)
Other CUMA variables Yes Yes Yes Yes
Agroeconomic variables Yes Yes Yes Yes
Weather variables Yes Yes Yes Yes
Random effects Postcode areas Postcode areas Postcode areas Postcode areas
# Observations 8444 8444 8444 8444
# Clusters 4222 4222 4222 4222
AIC 7181.4 7132.5 7215.1 7173.0

Notes: Random-effects estimations. Clustered standard errors are in parentheses. Intercepts are not reported. *** p < 0.01, ** p < 0.05, * p < 0.1. The postcode spatial
units reporting a zero value for the variable Substances per UAA as well as the last percentile of this variable are removed from the sample.

Table B4
Alternative model specification: using postcodes and PRAs random effects.

Dependent variable: Substances per UAA hectare (log)

(1) (2) (3) (4)

CUMA variables
# CUMA members − 0.0007*** – – –

(0.0001)
% CUMA members – − 0.0008** – –

(0.0003)
# Equipment per member – – 0.0030 0.0054

(0.0089) (0.0089)
% Agroecological equipment – – – − 0.0025***

(0.0008)
Other CUMA variables Yes Yes Yes Yes
Agroeconomic variables Yes Yes Yes Yes
Weather variables Yes Yes Yes Yes
Random effects
Postcode areas Yes Yes Yes Yes

(continued on next page)
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Table B4 (continued )

Dependent variable: Substances per UAA hectare (log)

(1) (2) (3) (4)

PRAs Yes Yes Yes Yes
# Observations 9296 9296 9296 9296
# Clusters 4648 4648 4648 4648
AIC 10,356.7 10,372.9 10,378.8 10,371.2

Notes: Random-effects estimations. Clustered standard errors are in parentheses. Intercepts are not reported. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table B5
Alternative modelling approach: using frequentist model averaging.

Dependent variable: Substances per UAA ha (log)

Complete models Model averaging

(1) (2) (3) (4)

CUMA variables
# CUMA members − 0.0007*** − 0.0007*** − 0.0006*** − 0.0006***

(0.0002) (0.0002) (0.0001) (0.0001)
% CUMA members − 0.0003 − 0.0002 − 0.0009** − 0.0008*

(0.0004) (0.0004) (0.0004) (0.0004)
# Equipment per member − 0.0019 − 0.0019 − 0.0060 − 0.0025

(0.0091) (0.0091) (0.0075) (0.0074)
% Agroecological equipment − 0.0023*** − 0.0022*** − 0.0024*** − 0.0022***

(0.0008) (0.0008) (0.0009) (0.0008)
# Members per CUMA − 0.0004 − 0.0007 0.0004 0.0006

(0.0013) (0.0012) (0.0006) (0.0006)
# Members per CUMA2 0.0000 0.0000 0.0000** 0.0000**

(0.0000) (0.0000) (0.0000) (0.0000)
Total asset per CUMA (ln) 0.0039 0.0054* − 0.0015 − 0.0003

(0.0033) (0.0033) (0.0021) (0.0021)
Agroeconomic variables Yes Yes Yes Yes
Weather variables Yes Yes Yes Yes
Random Effects
Postcode areas Yes Yes Yes Yes
PRAs No Yes No Yes
# Observations 9296 9296 9302 9302
AIC 10,684.7 10,542.2

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors are in parentheses. Intercepts are not reported.

References

Agrawal, A., 2001. Common property institutions and sustainable governance of
resources. World Dev. 9 (10), 1649–1672.

Aka, J., 2017. Market approval of phytosanitary active substances in Europe: an
empirical duration analysis. Food Policy 68, 143–153.

Alchian, A.A., Demsetz, H., 1972. Production, information costs, and economic
organization. Am. Econ. Rev. 62 (5), 777–795.

Askildsen, J.E., Jirjahn, U., Smith, S.C., 2006. Works councils and environmental
investment: theory and evidence from German panel data. J. Econ. Behav. Organ. 60
(3), 346–372.

Bakker, L., Sok, J., Van Der Werf, W., Bianchi, F.J.J.A., 2021. Kicking the habit: what
makes and breaks Farmers’ intentions to reduce pesticide use? Ecol. Econ. 180,
106868.

Baland, J.-M., Platteau, J.-P., 1996. Halting Degradation of Natural Resources: Is there a
Role for Rural Communities? Clarendon Press, Oxford.

Baldassarri, D., 2015. Cooperative networks: altruism, group solidarity, reciprocity, and
sanctioning in Ugandan producer organizations. Am. J. Sociol. 121 (2), 355–395.

Bandiera, O., Rasul, I., 2006. Social networks and technology adoption in northern
Mozambique. Econ. J. 116 (514), 869–902.

Bardsley, D.K., Bardsley, A.M., 2014. Organising for socio-ecological resilience: the roles
of the mountain farmer cooperative Genossenschaft gran Alpin in Graubünden,
Switzerland. Ecol. Econ. 98, 11–21.

Barton, K., 2023. MuMIn - R Package for Model Selection and Multi-model Inference
(Version 1.47.5). http://mumin.r-forge.r-project.org/.

Bauwens, T., Eyre, N., 2017. Exploring the links between community-based governance
and sustainable energy use: quantitative evidence from Flanders. Ecol. Econ. 137,
163–172.

Bjørnåvold, A., David, M., Bohan, D.A., Gibert, C., Rousselle, J.M., Van Passel, S., 2022.
Why does France not meet its pesticide reduction targets? Farmers’ socio-economic
trade-offs when adopting agro-ecological practices. Ecol. Econ. 198, 107440.
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Finger, R., Möhring, N., Dalhaus, T., Böcker, T., 2017. Revisiting pesticide taxation
schemes. Ecol. Econ. 134, 263–266.

Fulton, M., Giannakas, K., 2001. Organizational commitment in a mixed oligopoly:
agricultural cooperatives and investor-owned firms. Am. J. Agric. Econ. 83 (5),
1258–1265.

Fulton, M., Giannakas, K., 2013. The future of agricultural cooperatives. Ann. Rev.
Resour. Econ. 5 (1), 61–91.

Goddard, M.A., Dougill, A.J., Benton, T.G., 2013. Why garden for wildlife? Social and
ecological drivers, motivations and barriers for biodiversity management in
residential landscapes. Ecol. Econ. 86, 258–273.

Granovetter, M., 2005. The impact of social structure on economic outcomes. J. Econ.
Perspect. 19 (1), 33–50.

Gui, B., 1991. The economic rationale for the ‘third sector’. Ann. Publ. Cooperat.
Econom. 62 (4), 551–572.

Hansmann, H., 1999. Cooperative firms in theory and practice. LTA 48 (4), 387–403.
Hansmann, H., 2000. The Ownership of Enterprise. Harvard University Press,

Cambridge.
Harris, A., Fulton, M., 2000. The CUMA Farm Machinery Cooperatives. Working Paper.

Center for the Study of Co-operatives, University of Saskatchewan, Saskatoon.
Heckman, J.J., 2008. Econometric Causality. Int. Stat. Rev. 76 (1), 1–27.
Herbel, D., Rocchigiani, M., Ferrier, C., 2015. The role of the social and organisational

capital in agricultural co-operatives’ development. Practical lessons from the CUMA
movement. J. Co-operat. Organiz. Manag. 3 (1), 24–31.

Hess, C., 2008. Mapping the new commons. In: Governing Shared Resources: Connecting
Local Experience to Global Challenges, pp. 1–75. 12th Biennial Conference of the
International Association for the Study of the Commons, Cheltenham, England.

Ingram, P., Simons, T., 2002. The transfer of experience in groups of organizations:
implications for performance and competition. Manag. Sci. 48 (12), 1517–1533.

Jackson, M.O., Zenou, Y., 2015. Games on networks. In: Young, H.P., Zamir, S. (Eds.),
Handbook of Game Theory with Economic Applications, 4. Elsevier, Amsterdam,
pp. 95–163.

Jackson, M.O., Rogers, B.W., Zenou, Y., 2017. The economic consequences of social-
network structure. J. Econ. Lit. 55 (1), 49–95.

Jacquet, F., Butault, J.P., Guichard, L., 2011. An economic analysis of the possibility of
reducing pesticides in French field crops. Ecol. Econ. 70 (9), 1638–1648.

Kahindo, S., Blancard, S., 2022. Reducing pesticide use through optimal reallocation at
different spatial scales: the case of French arable farming. Agric. Econ. 53 (4),
648–666.

Larsen, A.E., McComb, S., 2021. Land cover and climate changes drive regionally
heterogeneous increases in US insecticide use. Landsc. Ecol. 36 (1), 159–177.

Larsen, A.E., Noack, F., 2017. Identifying the landscape drivers of agricultural insecticide
use leveraging evidence from 100,000 fields. Proc. Natl. Acad. Sci. 114 (21),
5473–5478.
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